4

Inputs/Outputs

In this chapter, you will see how Scilab integrates itself inside the computer environment.
You will be given examples of simple commands executed in the console. These will help
you get accustomed to using the console.

4.1. File system

The first concept that needs to be understood to use Scilab with ease is that of the current
directory. At each moment, a directory of your file system gets associated to your work
environment in Scilab. By default, this is the directory Scilab will search in to find auxiliary
information during certain operations (e.g. opening files, writing to files). There exist
several ways to interact with the file system:

* retrieve the name of the current directory through the FiLE menu in the console or
with the command pwd

¢ change the current directory through the FILE menu in the console or by using the
commands cd or chdir

e create a new directory with mkdir and remove a directory with rmdir

* move, copy or delete directories straight from the console with the commands copy -
file, movefile and mdelete

Paths for certain Scilab-specific directories are accessible from the console with the fol-
lowing commands:

e Scilab's installation directory can be retrieved with sc1 (also see Section 6.2, In-
stallation).

e The directory that stores user data (history, preferences, etc) is displayed with
scIHoME. This directory will change depending on the operating system used and
the way the user accounts are managed. For example, the directory will be, in
general:

- C:/Users/<User>/AppData/Roaming/Scilab/<Scilab-Version> for Win-
dows

page 23

Scilab from Theory to Practice - I. Fundamentals

- /home/<User>/.Scilab/<Scilab-Version> for Unixtype systems
- /Users/<User>/.Scilab/<Scilab-Version> for Mac OS

e Atemporary directory is also assigned to each Scilab work session. It is created
at the beginning of the session and destroyed at the end. Its path can be retrieved
from the console with TMPDIR. lts name is of the form sc1_TMP_* and its location
depends on the operating system.

Here are a few examples of directory operations that you can perform from the console:

-->path=pwd(); // current directory

-->cd SCI // go to the Scilab installation directory
ans =
D:\profils\Users\roux\AppData\Local\scilab-5.5.2

-->pwd // value of current directory
ans =
D:\profils\Users\roux\AppData\Local\scilab-5.5.2

-->cd contrib // go to the SCI/contrib/ directory
ans =
D:\profils\Users\roux\AppData\Local\scilab-5.5.2\contrib

-->cd '../' // "move up" to the SCI directory
ans =
D:\profils\Users\roux\AppData\Local\scilab-5.5.2

-->chdir('contrib') // go to the SCI/contrib/ directory
ans =
T

-->pwd // value of current directory
ans =
D:\profils\Users\roux\AppData\Local\scilab-5.5.2\contrib

-->chdir (TMPDIR) // go to the temporary directory
ans =
T

-->mkdir('test') // create the directory test/
ans =

il

-->1s('te*') // list the elements starting with "te"
ans =
test

-->rmdir('test') // remove the test/ directory
ans =
1.

page 24

Scilab from Theory to Practice - I. Fundamentals

-->dir('te*') // this is the content of the current directory which is
empty []
ans =

[1

-->chdir(path) // return to the initial current directory
ans =
T

All these operations can also be performed via a graphics interface through the file
browser (see Figure 4.1). This browser can be called from the APPLICATIONS menu from
the console or with the command filebrowser.

Figure 4.1 : File browser

Tip > Scilab's launch shortcut can be customized to specify the startup directory. By default, this directory
in usually the root directory of the user launching Scilab or the Scilab installation directory (SCI) for
Windows.

4.2. System commands

Itis possible to call system commands from Scilab. Depending on your operating system
you may use the command dos or unix, but both commands work the same way! Four
versions of the command unix process the result returned by the system in different ways:

* unix_g lets you redirect the output to a Scilab variable.

page 25

Scilab from Theory to Practice - I. Fundamentals

unix_w redirects the output to the console.
unix_x redirects the output to a popup window (see Figure 4.2).

unix_s does not return anything.

Here are several examples of results displayed in the console:
-->unix('dir") // return code
ans =
0.
-->unix_s('dir") // no output

-->unix_g('dir") // output to variable
ans =

Volume in drive C has no label.

Volume Serial Number is 3825-15B6

Directory of C:\Program Files\scilab-5.5.0\contrib

09/14/2014 105 PM
!

109/14/2014 105 PM
!

104/11/2014 103 AM 119 loader.sce
|

109/14/2014 105 PM toolbox_skeleton
|

109/14/2014 105 PM xcos_toolbox_skeleton
!
! 1 File(s) 119 bytes

!

! 4 Dir(s) 364,507,512,832 bytes free

-->unix_w('dir") // output to console
Volume in drive C has no label.
Volume Serial Number is 3825-15B6

Directory of C:\Program Files\scilab-5.5.0\contrib

09/14/2014 105 PM <DIR>
09/14/2014 105 PM <DIR> 5 0
04/11/2014 103 AM 119 loader.sce
09/14/2014 105 PM <DIR> toolbox_skeleton
09/14/2014 105 PM <DIR> xcos_toolbox_skeleton
1 File(s) 119 bytes
4 Dir(s) 364,506,988,544 bytes free

Scilab from Theory to Practice - I. Fundamentals

-->unix_x('dir") // output to window

-->cd(path);

Caution > The unix command returns an integer code which depends on the given result.

Figure 4.2 : Example of popup window returned by unix_x

To retrieve information related to the operating system that's running Scilab, use the com-
mand getos. Similarly, the command getversion tells you which Scilab version is being
used. More broadly, an operating system variable can be retrieved with the command
getenv.

-->getversion() // Scilab version
ans =
scilab-5.5.2

-->getos() // os windows
ans =
Windows

-->getenv('TMP") // retrieve the environment variable TMP
ans =
D:\profils\Users\roux\AppData\Local\Temp

page 27

Scilab from Theory to Practice - I. Fundamentals

Moreover, you can interact with the clipboard by using clipboard.

-->clipboard("copy", "test") // CTRL+C the text "test"
ans =

[1

-->clipboard("paste") // CTRL+V
ans =
test

4.3. CPU dates and times

For certain applications, you may need to access information related to time. Different
commands can be used to evaluate durations. You can:

e calculate the CPU time (= number of processor cycles) elapsed between two op-
erations by using timer

* calculate the real elapsed time in milliseconds between two actions with the com-
mand tic/toc, which starts/stops the Scilab timer

e pause Scilab for a certain duration with sleep(time in milliseconds) or
Xpause(time in microseconds)

¢ perform realtime simulations with realtimeinit (which allows you to set the time
unit) and realtime. The first call to realtime sets the current date origin and sub-
sequent calls force Scilab to wait until a specified date has passed to carry on.

Test these different commands with the following examples:

-->// time with tic() and toc()
-->tic()

-->sleep(1000) // 1000ms=1second
-->toc()

ans =
1.005

-->tic()

- ->xpause(200000) // 200000micros=0.2 seconds

-->toc()
ans =
0.206

page 28

Scilab from Theory to Practice - I. Fundamentals

-->// CPU time with timer
-->timer();
-->sleep(1000) // 1000ms=1second
-->timer ()
ans =
0.0468003
-->timer();
-->xpause(1000000) // 1000000micros=1 second
-->timer()
ans =
0.0312002
-->//real time
-->realtimeinit(1) // time unit of 1 second
-->realtime(0) // sets current date to t=0

-->tic()

-->realtime(2) // wait for date t=2

-->toc() // the timer will display 2 secondes
ans =
2.003

You can perform calculations using dates, but be careful, numerous formats can be used
to manage dates and as many functions exist to manipulate them.

e clock refrieves the date as a vector with six parameters [year, month, day, hour,
minute, second].

e datenun retrieves a date in the form of the number of days elapsed since January
1st of year zero.

* getdate retrieves a date as a timestamp (number of seconds elapsed since January
st 1970) or as a vector of ten parameters [year, month, week, Julian day,
day of the week, day of the month, hour, minute, second, millisecond]
(more complex than the clock outputs!).

Once the dates are retrieved, they can be processed by using other commands:

* datevec converts a timestamp into a vector corresponding to the appropriate date
for Scilab.

* weekday computes the day of the week corresponding to a timestamp.

page 29

Scilab from Theory to Practice - I. Fundamentals

* eomday computes the last day of a certain month for a given year.

e etime calculates the difference (in seconds) between two dates given by a vector
of six parameters.

Finally, the following functions display dates or calendars:

e date refrieves a date as a character string.

e calendar displays a monthly or annual calendar.

Caution > For the function weekday, the first day of the week is Sunday, whereas for the function
calendar, the first day of the week is Monday. If no arguments are specified, these functions return
the values corresponding to the current date. Otherwise, they return results for the dates specified as
parameters.

Here are a few examples of use of the previous functions:

-->calendar(1970,1) // Jan. 1970 calendar
ans =

ans(1)
Jan 1970
ans(2)
Tu
ans(3)

4,
11.
18.
258
0.
0.

-->eomday (2012, 2) // last day of February 2012
ans =
29.

-->d1=[1970 1 1 0 0 0] // Scilab date format
d1 =
1970. 1. 1. 0. 0. 0.

-->tl=datenum(d1l) // serial date number for date di
t1 =
719529.

-->[N,S]=weekday(t1) // day of the week for date di
S =
Thu

page 30

Scilab from Theory to Practice - I. Fundamentals

-->date() // current date
ans =
16-Jun-2015

-->d2=clock() // scilab vector for current date
d2 =
2015. 6. 16. 21. 11. 18.000004

-->t2=datenum(d2) // serial date number of date d2
t2 =
736131.88

-->datevec(t2) // date corresponding to t2
ans =
2015. 6. 16. 21. 11. 18.000004

-->etime(d1,d2) // difference between dates di1 and d2
ans =
- 1.434D+09

-->d=etime(d2,d1) // difference between dates d2 and di
d =
1.434D+09

-->getdate(d) // day occurring d seconds after Jan. 1st 1970
ans =

2015. 0 25. 167. 3. 16. 23. 11. 18.
0.0000038

4.4. Command history

Scilab provides a command history browser which automatically records commands
sent fo the console. This capability helps speed up the script writing process. With the
help of the following functions, you will be able to:

¢ clear the command history with resethistory

* save it to a file with savehistory, reload it in the Scilab environment with load-
history

* modify entries in the history with addhistory and removelinehistory
¢ retrieve and store it in a variable with gethistory

e display the command history within the browser with browserhistory or within the
console with displayhistory

You can also use the history browser (see Figure 4.3) if you prefer to use a graphical
interface to perform the operations described above.

page 31

Scilab from Theory to Practice - I. Fundamentals

Figure 4.3 : The history browser

Finally, the function diary lets the user store anything displayed in the console inside a
text file. Commands, along with their results, if applicable, are recorded between two
calls to the function diary.

-->path=pwd(); // current directory

-->id=diary('scilab-base-diary.txt"') // open the diary
id =
2.

-->cd TMPDIR // temporary Scilab directory
ans =
D:\profils\Users\roux\AppData\Local\Temp\SCI_TMP_6184_

-->resethistory() // erase history log

page 32

. Scilab from Theory to Practice - I. Fundamentals

Excerpt from the book

written by Philippe Roux,

2016 Editions D-BookeR

C

translated into English by Perrine Mathieu -

Scilab from Theory to Practice - I. Fundamentals

-->addhistory('1ls") // add a line to the history log

-->gethistory() // retrieve the command history inside a
variable

ans =

'// -- 16/06/2015 21:11:16 -- // !

! !
11s !

-->displayhistory() // display history log

Q0 : // -- 16/06/2015 21:11:16 -- //

1: 1s

-->savehistory('essai.txt') // save the history inside a file
-->dir('essai.txt') the file is created inside the current
directory

ans =

essai.txt

-->browsehistory() open the history browser

-->cd(path); return to the initial directory

-->diary(id, 'close') close the diary

Caution > When a Scilab program is launched from a saved file (like the ones shown in the chapter Preview
of Scilab) by using graphical interface shortcuts (see the video in Figure 3.5), the commands executed,
including the exec command that appears in the console, are left out of the history log.

page 33

Scilab from Theory to Practice - I. Fundamentals

Excerpt from the book

written by Philippe Roux,

2016 Editions D-BookeR

C

translated into English by Perrine Mathieu -

