5

Finding Information on Scilab

Learning a new language or software by yourself usually requires outside help. The Internet can provide you with that help in different ways. In this chapter, you will find several useful sites you can visit to find information on Scilab.

5.1. Documentation on the Scilab website

The Scilab website is your starting point. It contains a Documentation section in which you will find:

- all the Scilab help pages that describe each Scilab feature (these same pages are accessible from the software)
- a wiki with information on certain developmental procedures specific to Scilab (developing supplementary modules, using the Scilab API, porting MATLAB tools to Scilab)
- a MATLAB-Scilab dictionary
- tutorials, books and articles, etc.

The official Scilab website also houses a page dedicated to the user exchange of Scilab programs.

Figure 5.1: Scilab File Exchange page
5.2. Mailing Lists

For those who wish to get more personalized assistance, there exist numerous mailing lists dedicated to Scilab. They facilitate exchanges between Scilab users and developers. These official lists are located on the scilab.org website. You can find lists specifically made for users:

- a list for english-speakers users@lists.scilab.org
- a list for french-speakers users-fr@lists.scilab.org
- for questions pertaining to the educational use of Scilab, see enseignement@lists.scilab.org (exchanges in French)

and lists (only in English) dedicated to developers:

- the primary list dev@lists.scilab.org
- for issues related to the translation of the Scilab interface in different languages localization@lists.scilab.org
- for questions linked to the inclusion of Scilab in a distribution distributor@lists.scilab.org

There are also other mailing lists, such as usenet, or forums, however these websites are not managed by the Scilab development team.

5.3. Keeping track of bugs with Bugzilla

The development and growth of the Scilab software is based on the continuous dialog between users and developers. To ensure the proper management of user requests, the Scilab team uses a bug tracking system called Bugzilla, which is accessible at http://bugzilla.scilab.org/.

When you discover an issue while using Scilab, it is generally advisable to report the incident on Bugzilla, unless the issue has already been identified. This helps the development team improve the software and increases the chances of getting the issue you found fixed. In order to do this, you need to create a user account on Bugzilla. Then, you need to fill out a form detailing the issue and, if possible, include an example of a way to reproduce the problem.
Figure 5.2: Scilab's Bug Tracker

Figure 5.3: Reporting a bug on Bugzilla
Tip > Certain bugs may be linked to your operating system or the libraries used by your machine. In order to determine what the bug is linked to, provide information on the environment in which the bug was found. The command `ver` lets you easily retrieve this information in the Scilab console:

```
-->ver()
ans =
!Scilab Version:                    5.5.2.1427793548                !
!Operating System:                  Windows 7 6.1                   !
!Java version:                      1.6.0_41                        !
!Java runtime information:          Java(TM) SE Runtime Environment (build 1.6.0_41-b02) !
!Java Virtual Machine information:  Java HotSpot(TM) 64-Bit Server VM (build 20.14-b01, mixed mode)!
!Vendor specification:              Sun Microsystems Inc.          !
```

Caution > Before reporting a bug, make sure the bug is not already listed by searching the Bugzilla reports list. You can search the database straight from Bugzilla’s main page by using keywords, as shown in the figure below (with the keyword surf).

5.4. Supplementary modules on Forge

As we previously mentioned in the chapter The Graphical Interface, Scilab’s capabilities can be enhanced by adding supplementary modules developed for specific applications. For example:

- Metanet to manage graphs and networks
• SIVP for image processing
• Guimaker to create graphical interfaces
• Scimax for symbolic computation (via the software Maxima)

These modules are individual projects, however they are completely dependent on Scilab. There exist a lot of projects such as these (more than a hundred) that can all be found on the Scilab Forge (see Figure 5.4), which facilitates searches.

Figure 5.4: Scilab Forge page for the Metanet supplementary module

Each supplementary module's page in Forge lets users access source codes as well as report bugs. You can install/uninstall these modules via the module manager ATOMS or by using the commands:

• `atomsInstall` to install a module (see Figure 5.5)
• `atomsRemove` to uninstall a module
Figure 5.5: Installing a supplementary module with `atomsInstall`

Once the module is installed, you need to restart Scilab to make it work. As the module loads, messages are displayed in the console (see Figure 5.6).

Figure 5.6: Loading of the SIVP module as Scilab starts up

Tip > Certain external modules may need to be compiled during the installation process which may cause issues for Windows users. In this event, there are two solutions:

- Install a Microsoft Visual C++ redistributable version which you can download directly from the Microsoft site.
- Install the Scilab MinGW supplementary module which was created for this explicit purpose.

Caution > If you experience issues with a supplementary module, you can uninstall it manually by deleting its corresponding directory within the `SCI/contrib/` directory (see Section 6.2, Installation).