1

Preview of Scilab

Scilab is a numerical computation software that is open source, multi-platform and is
meant for the theoretician as well as the engineer. It possesses a high level computer lan-
guage that is well adapted to mathematical notation, as well as complementary modules
targeted at scientific applications. These applications include signal and image process-
ing, statistical analysis, mechanical simulations, fluid dynamics, numerical optimization,
modeling and simulation of hybrid dynamic systems, etc. To demonstrate its capacities,
we showcase an example of a comet in orbit around the Sun, following a trajectory
perturbed by the presence of a planet in a stable orbit around the Sun. Despite the
complexity of the problem, you can easily simulate such a system with Scilab and obtain
a three dimensional animation of the movement of the different bodies. An example of
this video can be seen below.

Figure 1.1 : Simulation of a comet's orbit (vidéo)

ERe &3

File Browser A% sdDocuments/scilab/cometan. sce) - Sciliotes 2 8%

B froux/Documents/scllab | » | # 6@ ™ 8 o T She g

Jome: * | 1| craphic window number a z

* [sclab
&

comet dyramics simlation : £= 86 25150 years

B penduleelastique.sce

$VE2=- 25 VY2 Va2

Bvals wls val; a2 y2: 22wz wy2s vazl;
f51(force . wo. 1));
I

88 Case sensitive [| Regular exp. To[A =]

This animation was obtained using a program written in the Scilab language and pre-
sented in the following Example 1.1.

page 2

http://www.d-booker.net/_EN/GALERIE/scilab/base/intro/presentation/scilab-base-intro-comet3D.mp4

Scilab from Theory to Practice - I. Fundamentals

Example 1.1 : Script used to visualize the trajectory of a comet around the Sun

[/ KRR Rk ok Rk ok ok ok ok Rk Rk Rk

// simulation of the perturbed trajectory of a comet
//**
// parameterization of a sphere
function [x,y,z]=sphere(theta,phi)
A=0.1,B=0.01
x=A*cos(phi).*cos(theta)
y=A*cos(phi).*sin(theta)
z=B*sin(phi)
endfunction
// function to draw a sphere
function plot_sphere(x,y,z)
phi=[0:0.1:2*3.15];
theta=[2*3.15:-0.05:0];
[dx, dy,dz]=eval3dp(sphere, theta, phi);
surf(x+dx, y+dy, z+dz);
endfunction
// function to plot the z=0 plane
function plot_ecliptic(ebox)
x=[ebox(1);ebox(2)]
y=[ebox(3);ebox(4)]
z=zeros(2,2)
surf(x,y,z)
endfunction

// functions calculating the gravitational forces
function [u2]=force_g(t,u,mass)
module=-G*mass*((u(1)r2+u(2)r2+u(3)r2)~(-3/2))
u2=[module*u(1); module*u(2); module*u(3)]
endfunction

function [du]=force(t,u,massO,massl)
ul=[u(1);u(2);u(3)]
dul=[u(4);u(5);u(6)]
u2=[u(7);u(8);u(9)]
du2=[u(10);u(11);u(12)]
dduil=force_g(t,ul, mass0)
ddu2=force_g(t,u2,mass0)+force_g(t,u2-ul, massl)
du=[dul;ddul;du2;ddu2]

endfunction

// constants
6=0.04;
me=1000;
mi=1;
dt=0.05;
T=50;
dx=0.5;
dy=0.5;
dz=0.5;
alpha=65;
Beta=150;

page 3

. Scilab from Theory to Practice - I. Fundamentals

Excerpt from the book

written by Philippe Roux,

2016 Editions D-BookeR

©

translated into English by Perrine Mathieu -

Scilab from Theory to Practice -

[/ KRR Rk ok ko ok Rk Rk Rk

// trajectory calculations
//**
// initial coordinates of the planet
x1=5;y1=0;21=0;vx1=0;vyl1=2.5;vz1=0;

// initial coordinates of the comet
X2=6,y2=6,22=0.21,vX2=-2,vy2=-0.5,vz2=-0.1;

//solve the differential equation using ode

t=[0:dt:T];

ue=[x1; y1; z1; vx1; vyl; vzl; Xx2; y2; z2; vx2; vy2; vz2];
u=ode(u0,0,t,list(force,mo, m1));

// retrieve results

X=[u(1,)" u(7,:)"];

Y=[u(2,:)",u(8,:)"];

Z=[u(3,:)",u(9,:)"1;

[/ KRR Rk ok ko ok ok ok ko ok ok ok ok ok ok ok ok ok Rk ok kR ok Rk R kR ok

// launch the graphics window
//**
ebox=[min(X),max(X),min(Y),max(Y),min(Z),max(Z)];
N=length(t); // number of steps
drawlater()

plot_ecliptic(ebox) // plot the ecliptic plane
plot_sphere(0,0,0) // sun
plot_sphere(X(1,1),Y(1,1),2Z(1,1)) // planet
plot_sphere(X(1,2),Y(1,2),2(1,2)) // comet

A=gca();

A.axes_visible=["off" "off" "off"];
A.rotation_angles=[alpha Beta];

A.data_bounds=ebox;

drawnow()

[/KRR R Rk ok ko ok ok ok ok ok ok ok ok ok ok ok kR kR ok Rk Rk Rk

// main loop creates the graphical animation

[/ KRR R ko ok ko kR ok Rk Rk Rk

for k=1:5:N

Beta=Beta+k/300; // view angle
realtimeinit(0.05) // unit of time
drawlater() // open the graphical buffer
clf() // erase the graphical buffer
plot_ecliptic(ebox) // plot on ecliptic plane
param3d1(X(1:k,:),Y(1:k,:), ... // display the
list(z(1:k,:),[5,2]1)) // trajectories
plot_sphere(0,0,0) // the sun
plot_sphere(X(k,1),Y(k,1),Z(k,1)) // the planet
plot_sphere(X(k,2),Y(k,2),Z(k,2)) // the comet
title('comet dynamics simulation : t="+msprintf(...
'%2.2f"',t(k))+'/ "+string(T)+' years') // title
xinfo(string(t(k))) // display time
A=gca(); // resize the graphics window
A.axes_visible=["off" "off" "off"];
A.rotation_angles=[alpha Beta]; // rotate pt of vue
A.data_bounds=ebox;
drawnow() // display graphical buffer
realtime(k) // pause to adjust display rate
end

I. Fundamentals

page 4

. Scilab from Theory to Practice - I. Fundamentals

Excerpt from the book

written by Philippe Roux,

2016 Editions D-BookeR

@
©

translated into English by Perrine Mathieu -

Scilab from Theory to Practice - I. Fundamentals

This example provides a small preview of Scilab's capabilities pertaining to graphics as
well as numerical computation. With a small degree of skill, you will rapidly be able to
go beyond this level. For example, you may then create programs that allow the user
to interact with Scilab's graphical interface and create his/her own animations such as
those shown in the video below.

Figure 1.2 : Simulation of a pendulum hung from a spring (video)

CEe @B & * K 0O %L 0% & K ©

File Browser 7 7 % SCiabs.5.0 Console ?Rx sce -Soiiotes? A X

B8 /roux/Documents/scilab/ | »

In this example, we simulate the trajectory of a pendulum hung from a spring (of stiffness
k), oscillating freely after being released from a given position with no initial velocity.
The pendulum's motion is modeled through a system of differential equations involving
two variables:

2
d d da .
rxd7§‘+2d—§ X qr = & X sin(a)

%k da \2
m—m(r—r@:r)((a) + g X cos(a)

where:

* a isthe angle of the pendulum with respect to the vertical

e r isthe length of the spring that constitutes the pendulum

da(0 dr(0
and with the initial conditions: a(0) = aj, % =0, r(0)=ry, % =0

page 5

. Scilab from Theory to Practice - I. Fundamentals

Excerpt from the book

2016 Editions D-BookeR

C

translated into English by Perrine Mathieu -

written by Philippe Roux,

http://www.d-booker.net/_EN/GALERIE/scilab/base/intro/presentation/scilab-base-intro-penduleelastique.mp4

Scilab from Theory to Practice - I. Fundamentals

In order to study a system like this that is very sensitive to initial conditions, it is important
to be able to easily modify the initial position and observe the effect of each parameter
on the movement. With Scilab, it is possible to create a graphical interface that simplifies
the input of parameters and lets the user focus on the analysis of results. With the script
shown in Example 1.2, you can modify the initial position of the pendulum with a simple
mouse click in the graphics window and study its movement.

Example 1.2 : Script used to modify the pendulum's initial position

[/ KEHRF KKK KE KKK KKK KKK KKK KA AKKKKEKIKKKKAKIIXAAKF I XA KK IR K KKK KA KK XX KK

// animation of a spring pendulum
//***
// function to create rotation matrix
function M=rot(a)

M=[cos(a),sin(a);-sin(a),cos(a)];

endfunction

// constants

n=40; // number of coils of the spring
T=5; // duration of the simulation
g=9.81; // g (gravitational acceleration)
k=10; // k (spring stiffness)

dt=0.01; // dt (time step)

[/ KEHRF KKK KK E KKK KKK KKK KKK K KA KKKKEIIKKKKAKFHXAAKF KA K IR KKK KR K KX KKK

// launch the graphics window

//***

// window title

xtitle("(left-click to start the animation, right-click to stop)")

// title page (in LaTeX)

titlepage(["numerical solution of the spring pendulum ODE : ";" "; "$

$\Large r{dnr2\over dtr2}a+2{d\over dt}r \times {d\over dt}a=g\times
\sin(a)$s";

"t "$$\Large {dr2\over dtA2}r-{k\over m}(r-r_0)=r\left({d\over dt}
a\right)n2+g\times \cos(a)$$";" "; " with initial conditions : "; "$$
\Large a(0)=? \;\;\;\;\;\; {d\over dt}a(0)=0 \;\;\;\;\;\; r(0)=r_o=?
;NN\ N\ {d\over dt}r(0)=0 3"])

[/ KERF KKK KK E KKK KKK KKK KKK K A KKK IIKKKAKFHXK KK I KA K IR KKK KR K KKK K

// processing the graphics window interactions

//***

// wait for a mouse click in the window

[c_i,c_x,c_y,c_w]=xclick();

while (c_i<>2)&(c_i<>5) // as long as there is no right-click
clf() //clear the window

[/ KERF KKK KI KKK KKK KKK KKK KEIKKKKEIKIKXKAKF KKK K IR KKK KKK KK XX KK

// retrieve the animation's initial data

//***

// window title

xtitle("(one click to initialize pendulum position a(@) and
r(e))"

// parameterize the window's Axes handle

plot(0,0,"'.k");A=gca();A.x_location="origin";

page 6

Scilab from Theory to Practice - I. Fundamentals

Excerpt from the book

© 2016 Editions D-BookeR

translated into English by Perrine Mathieu -

written by Philippe Roux,

Scilab from Theory to Practice - I. Fundamentals

A.y_location="origin";A.auto_scale="off";A.isoview="on";
A.data_bounds=[-1 -1; 1,0];xgrid(3)

// retrieve the pendulum's initial position coordinates
[c_i,x,y,c_w]=xclick();

// compute initial values
a=sign(x)*abs(atan(x/y));a0=a;da=0; // compute angle a(0)
l=sqrt(xA2+ynr2);r=1;,dr=0; // compute r(0)

// adapt the window's size to the pendulum's maximum size
A.data_bounds=[-1.5, -max(4*1,4);1.5,max(1,0.5)];

[/ KR KRk ok ok ok ok ok ok ok ok ko kR kR Rk kKRR R Rk R R Rk Rk Rk Kk Kk

// loop creates the animation

[/ KR KR ko ok ok ok ok ok ok ok ok kK kK Rk kR kR Rk Rk kR KRk Rk R R Rk Rk Rk Rk Rk

for t=0:dt:T

/KRR ko sk o ok o ok o ok

// compute new positions
//**
// solve the differential equation for a and r using

// Euler's method

dda=-(g*sin(a)+2*dr*da)/r;
ddr=r*(da)”r2-k*(r-1)+g*cos(a);

da=da+dt*dda;

dr=dr+dt*ddr;

a=a+dt*da;

r=r+dt*dr;

// compute the spring's line representation
springr=linspace(0O,r,n)"'; // the spring stretches
// coordinates transverse to spring's axis -> /\/\/\
springa=[0;(-1).A[0:n-3]"';0]*(1/10);

//rotate the spring's picture by the angle a
x=[x;r*sin(a)];

y=[y;-r*cos(a)l;

M=-rot(-a);

N=[springr,springa] *M;

springy=N(:,1);springx=N(:,2);

/KRR sk ko ok o ok

// display the pendulum
//**
drawlater() // write to the graphics buffer
clf() // clear the window
plot(springx, springy) //display the pendulum's spring
xstring(0,0.1, ["t=" string(t)]) // elapsed time
// pendulum bob :
xfarc(r*sin(a)-0.05, -r*cos(a)+0.05,0.1,0.1,0,360*64)
// resize the graphics window
A=gca();A.data_bounds=[-1.5, -max(4*1,4);1.5,max(1,0.5)];
A.auto_scale="off";A.isoview="on";
A.axes_visible=["off" "off" "off"];
drawnow() // display the graphics buffer
realtime(t); // delay display

end

[/KRR KR ko ok ok ok ok ok ok ok ok ok kK kR ok kR Rk kR Rk kR kR Rk Rk Rk Rk Rk Rk Rk

// choose a new animation or exit program
//***
xtitle("(one clic to proceed)") // window title
plot(x,y,"'-r") // display trajectory
A=gca();A.isoview="on";xgrid(3); // display grid (green)

page 7

Scilab from Theory to Practice - I. Fundamentals

Excerpt from the book

written by Philippe Roux,

2016 Editions D-BookeR

@
©

translated into English by Perrine Mathieu -

Scilab from Theory to Practice - I. Fundamentals

// waiting for a mouse click in graphics window :
[c_i,x,y,c_w]l=xclick();

clf(); // choose a new operation
xtitle("(left-click to start the animations, right-click to
stop)")

plot(0,0,"'.k");A=gca();A.x_location="origin";
A.y_location="origin";
// waiting for a mouse click in the window :
[c_i,x,y,c_w]=xclick();

end

These two examples require knowledge of basic Scilab concepts that we are going to
infroduce in the rest of this book. Once you are done reading, you will be fully able to
recreate them yourself. We will demonstrate this in the last chapter Two Case Studies:
a Pendulum and Comet Orbit.

Caution > To make sure the above scripts are properly executed, use Scilab version 5.4.1 or later.

page 8

Scilab from Theory to Practice - I. Fundamentals

Excerpt from the book

© 2016 Editions D-BookeR

translated into English by Perrine Mathieu -

written by Philippe Roux,

