Matrices

Matrices are the most important and most frequently used obijects in Scilab. This type is
used to portray tables with one or two dimensions in a unified way.

9.1. Creating and modifying

There are several ways of creating tables in Scilab. The most simple is based on the
concatenation operator []. To create a matrix, enter a list of values, row by row, in
between brackets while obeying the following syntax rules:

* Values on the same row are separated by spaces or a comma {,).

¢ Rows are separated by semicolons (;).

The console commands can be entered over several lines (as long as you don't forget
to close the matrix correctly).

Caution > Contrary to other languages, the cell/row/column numbering in Scilab starts at I (rather than
at 0).

The command size returns the size of a matrix (number of rows and columns). The result
of this command is a matrix with one row and two columns.

-->A=[1 2 3; 45 6; 7 8 9] // matrix 3 lines and 3 columns
A

2. 3.

o 6.

8. 9.

-->typeof(A) // same type as real numbers
ans =
constant

-->size(A) // size of A
ans =
3. 3.

-->B=[10,11,12;15 14 13] // matrix with 2 rows and 3 columns
B =
10. 11. 12.

page 69

Scilab from Theory to Practice - I. Fundamentals

15. 14. 13.

-->size(B) // size of B
ans =
2o S

-->// enter over multiple lines

-->[1 2 3;
-->3 4 5]
ans =

Tip > The [] command produces an empty matrix, with zero rows and zero columns. A number (real,
complex, integer) is considered a matrix with one line and one column.

Matrices can later be concatenated to create larger ones, by using [1, as long as they
have the right dimensions.

-->A=[1 2 3; 45 6; 7 8 9];
-->B=[10,11,12;15 14 13];

-->C=[A;B] // A above B
c =

0. : 2,
5 3

-->D=[B;A] // B above A
D =
10. o 12.
15. o 13.
3.
6.
9.

-->E=[C, D] // C left of D
E
10.
15.
. . . 1.
0. . 2. 4.
5. 3 7.

-->F=[D,C] // D left of C

1.
4.
7.
1

0.

Scilab from Theory to Practice - I. Fundamentals

7 o 9. SIS 14. a3,
-->G=[A, B] // A left of B -> error
l--error 5

Inconsistent column/row dimensions.

You can also concatenate matrices with the cat command.

-->A=[1 2 3; 45 6; 7 8 9] // 3x3 matrix (3 rows, 3 columns)
A

2. 3.

e 6.

8. 9.

-->B=[10,11,12;15 14 13] // 2x3 matrix (2 rows, 3 columns)
B =

10. 11. 12.

15. 14. 13.

-->// concatenating matrices

-->C=[A;B] // A above B
C

0. il
5 4

-->cat(1,A,B)
ans =

0. : 25
5 3.

-->D=[B;A] // B above A
D =

10. 11. 12.

15. 14. 13.

il 20 3.

4. 5. 6.

7. 8. 9.

-->cat(1,B,A) // =D
ans =

10. 11.
15. 14.
il 20
4. 5.
7.

Scilab from Theory to Practice - I. Fundamentals

-->E=[C, D] // C left of D
E

10.
15.
1.
4.
7a

-->cat(2,C,D)

Caution > The matrices you wish to concatenate need to have compatible dimension, otherwise you will
get an error message (5 or 6) stating Inconsistent row/column dimensions.

You can generate certain special matrices automatically by providing their size as input
to the following functions:

* zeros produces a zero matrix and ones yields a matrix full of 1s.
e eye creates the identity matrix (with 1s on the main diagonal and Os elsewhere).

¢ rand fills a matrix with pseudorandom numbers uniformly distributed in the interval
[0;1[(also see grand which is used to generate random numbers according to
different distributions as described online help grand).

-->0=zeros(2,3) // zero matrix

matrix of ones

-->Id=eye(3,3) identity matrix
Id

1. 0.

0. 1.

0. 0.

-->M=rand(2, 2) // random numbers

0.537622980 0.225630349
0.119992550 0.627409308

page 72

Scilab from Theory to Practice - I. Fundamentals

Tip > When the functions zeros, ones, eye and rand take a matrix as argument, they generate a
matrix of the same size as the input matrix. More specifically, if the input is a number, these functions
create a 1x1 matrix (i.e. just a number!).

-->A=rand(2,2)
A =
0.280649802 0.778312860
0.128005846 0.211903045

-->// creates a zero matrix of the same size as A

-->zeros(A)
ans =
0. 0.
0. 0.

-->// zeros(2) does not create a vector with two entries

-->zeros(2)
ans =
0.

To retrieve the different values stored inside a matrix, specify the row and column of the
entry of interest in between parentheses (). To modify a matrix value, use the = to assign
a new value fo the entry.

-->A=[1 2 3; 45 6; 7 8 9] // 3x3 matrix (3 rows, 3 columns)

3.
6.
OF

-->A(2,3) // value stored at row 2, column 3
ans =
6.

-->A(2,3)=-1 // modify the value at row 2 column 3
3.
il
9.

-->A(4,5)=10 // this assignment increases the size of A
A

0.
0.
0.
al

0.
--> // entry that doesn't exist in A

-->A(10,10) // this call returns error 21

page 73

Scilab from Theory to Practice - I. Fundamentals

I--error 21

Invalid index.

Tip > If you assign a value to a matrix entry that does not exist (the row/column number is greater than
the matrix size), Scilab automatically increases the size of the matrix to assign the new value. It also
incidentally fills the other entries that were created in the process with 0s.

You can also modify matrix entries via a graphical interface with the function x_matrix
(see Figure 9.1) or by using the variable editor with the command editvar (see Figure
8.1 or Figure 9.1).

Figure 9.1 : Graphical interface to modify matrix entries

Caution > If you try and access a matrix value with an index that exceeds the matrix size, Scilab returns
an execution error which states Invalid index. This is the case when calling the entry/row/column number
0 (or indexing with negative or non-integer numbers).

page 74

Scilab from Theory to Practice - I. Fundamentals

Excerpt from the book

written by Philippe Roux,

© 2016 Editions D-BookeR

translated into English by Perrine Mathieu -

